skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hung, Jacqueline"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Landscapes are often assumed to be homogeneous when interpreting eddy covariance fluxes, which can lead to biases when gap-filling and scaling up observations to determine regional carbon budgets. Tundra ecosystems are heterogeneous at multiple scales. Plant functional types, soil moisture, thaw depth, and microtopography, for example, vary across the landscape and influence net ecosystem exchange (NEE) of carbon dioxide (CO2) and methane (CH4) fluxes. With warming temperatures, Arctic ecosystems are changing from a net sink to a net source of carbon to the atmosphere in some locations, but the Arctic's carbon balance remains highly uncertain. In this study we report results from growing season NEE and CH4 fluxes from an eddy covariance tower in the Yukon–Kuskokwim Delta in Alaska. We used footprint models and Bayesian Markov chain Monte Carlo (MCMC) methods to unmix eddy covariance observations into constituent land-cover fluxes based on high-resolution land-cover maps of the region. We compared three types of footprint models and used two land-cover maps with varying complexity to determine the effects of these choices on derived ecosystem fluxes. We used artificially created gaps of withheld observations to compare gap-filling performance using our derived land-cover-specific fluxes and traditional gap-filling methods that assume homogeneous landscapes. We also compared resulting regional carbon budgets when scaling up observations using heterogeneous and homogeneous approaches. Traditional gap-filling methods performed worse at predicting artificially withheld gaps in NEE than those that accounted for heterogeneous landscapes, while there were only slight differences between footprint models and land-cover maps. We identified and quantified hot spots of carbon fluxes in the landscape (e.g., late growing season emissions from wetlands and small ponds). We resolved distinct seasonality in tundra growing season NEE fluxes. Scaling while assuming a homogeneous landscape overestimated the growing season CO2 sink by a factor of 2 and underestimated CH4 emissions by a factor of 2 when compared to scaling with any method that accounts for landscape heterogeneity. We show how Bayesian MCMC, analytical footprint models, and high-resolution land-cover maps can be leveraged to derive detailed land-cover carbon fluxes from eddy covariance time series. These results demonstrate the importance of landscape heterogeneity when scaling carbon emissions across the Arctic. 
    more » « less
  2. {"Abstract":["This project is integrating scientific research in the Arctic with education and outreach, with a strong central focus on engaging undergraduate students and visiting faculty from groups that have had little involvement in Arctic science to date. The central element of the project is a month-long research expedition to the Yukon River Delta in Alaska. The expedition provides a deep intellectual and cultural immersion in the context of an authentic research experience that is paramount for "hooking" students and keeping them moving along the pipeline to careers as Arctic scientists. The overarching scientific issue that drives the research is the vulnerability and fate of ancient carbon stored in Arctic permafrost (permanently frozen ground). Widespread permafrost thaw is expected to occur this century, but large uncertainties remain in estimating the timing, magnitude, and form of carbon that will be released when thawed. Project participants are working in collaborative research groups to make fundamental scientific discoveries related to the vulnerability of permafrost carbon in the Yukon River Delta and the potential implications of permafrost thaw in this region for the global climate system.\n This data set includes vegetation biomass and elemental analysis, thaw depth, and point intercept results from the 2019 expedition."]} 
    more » « less
  3. {"Abstract":["This project is integrating scientific research in the Arctic with education and outreach, with a strong central focus on engaging undergraduate students and visiting faculty from groups that have had little involvement in Arctic science to date. The central element of the project is a month-long research expedition to the Yukon River Delta in Alaska. The expedition provides a deep intellectual and cultural immersion in the context of an authentic research experience that is paramount for "hooking" students and keeping them moving along the pipeline to careers as Arctic scientists. The overarching scientific issue that drives the research is the vulnerability and fate of ancient carbon stored in Arctic permafrost (permanently frozen ground). Widespread permafrost thaw is expected to occur this century, but large uncertainties remain in estimating the timing, magnitude, and form of carbon that will be released when thawed. Project participants are working in collaborative research groups to make fundamental scientific discoveries related to the vulnerability of permafrost carbon in the Yukon River Delta and the potential implications of permafrost thaw in this region for the global climate system.\n This data set includes vegetation biomass and elemental analysis, thaw depth, and point intercept results from the 2018 expedition."]} 
    more » « less
  4. {"Abstract":["This project is integrating scientific research in the Arctic with education and outreach, with a strong central focus on engaging undergraduate students and visiting faculty from groups that have had little involvement in Arctic science to date. The central element of the project is a month-long research expedition to the Yukon River Delta in Alaska. The expedition provides a deep intellectual and cultural immersion in the context of an authentic research experience that is paramount for "hooking" students and keeping them moving along the pipeline to careers as Arctic scientists. The overarching scientific issue that drives the research is the vulnerability and fate of ancient carbon stored in Arctic permafrost (permanently frozen ground). Widespread permafrost thaw is expected to occur this century, but large uncertainties remain in estimating the timing, magnitude, and form of carbon that will be released when thawed. Project participants are working in collaborative research groups to make fundamental scientific discoveries related to the vulnerability of permafrost carbon in the Yukon River Delta and the potential implications of permafrost thaw in this region for the global climate system.\n This data set contains pressure, Photosynthetically Active Radiation (PAR), air temperature, wind direction, wind speed, wind gust speed, rain, relative humidity, soil moisture at 15 centimeter (cm) depth, and two measurements of soil temperature at 15 cm depth from the 2018 and 2019 expeditions."]} 
    more » « less
  5. Data from this study originate from the NSF (National Science Foundation) Polaris Project. The Polaris Project integrates scientific research in the Arctic-boreal region with education and outreach, with a primary focus on engaging and inspiring the next generation of scientists. The overarching scientific issue that drives the Polaris Project is the vulnerability and fate of ancient carbon stored in perennially frozen ground, permafrost. Although extensive permafrost thaw is expected to occur across the northern permafrost region this century, large uncertainties remain in the timing, magnitude, and form of carbon that will be released. Participants of the Polaris Project conducted field research in the Yukon-Kuskokwim Delta (YKD), collaborating to make fundamental scientific discoveries related to the transformation and fate of thawed permafrost carbon, and implications for global climate. This data set includes aquatic chemistry data from expeditions to the YKD during 2015–2019. Parameters measured include water temperature, pH, dissolved oxygen, conductivity, dissolved organic and inorganic carbon, nitrogen species, phosphorous, greenhouse gases, stables isotopes of carbon and water, optical properties of water, and fluxes of methane and carbon dioxide made in the field. These data were compiled and underwent quality assurance / quality control specifically for the scientific objectives of the manuscript published by Zolkos et al. (2022). Consequently, this dataset contains a modified version of Polaris Project YKD aquatic chemistry data previously published for 2015–2016 (http://doi.org/10.18739/A22804Z8M) and 2017 (http://doi.org/10.18739/A23775V7T). Data from 2018–2019 were not previously published. Therefore, users interested in the original datasets for 2015–2017 are encouraged to access them via the provided links, while users interested in the data and metadata specific to the associated manuscript by Zolkos et al. are encouraged to use this companion dataset. 
    more » « less
  6. To understand patterns in CO2 partial pressure (PCO2) over time in wetlands’ surface water and porewater, we examined the relationship between PCO2 and land–atmosphere flux of CO2 at the ecosystem scale at 22 Northern Hemisphere wetland sites synthesized through an open call. Sites spanned 6 major wetland types (tidal, alpine, fen, bog, marsh, and prairie pothole/karst), 7 Köppen climates, and 16 different years. Ecosystem respiration (Reco) and gross primary production (GPP), components of vertical CO2 flux, were compared to PCO2, a component of lateral CO2 flux, to determine if photosynthetic rates and soil respiration consistently influence wetland surface and porewater CO2 concentrations across wetlands. Similar to drivers of primary productivity at the ecosystem scale, PCO2 was strongly positively correlated with air temperature (Tair) at most sites. Monthly average PCO2 tended to peak towards the middle of the year and was more strongly related to Reco than GPP. Our results suggest Reco may be related to biologically driven PCO2 in wetlands, but the relationship is site-specific and could be an artifact of differently timed seasonal cycles or other factors. Higher levels of discharge do not consistently alter the relationship between Reco and temperature normalized PCO2. This work synthesizes relevant data and identifies key knowledge gaps in drivers of wetland respiration. 
    more » « less
  7. Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic Plant Aboveground Biomass Synthesis Dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass grams per meter squared (g/m^2) on 2327 sample plots in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic. 
    more » « less